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Filters With Small Non-Linearities

Robert J. Elliott

Department of Statistics and Applied Probability
University of Alberta
Edmonton, Alberta, Canada T6G 2G1

ABSTRACT

The Kalman filter provides a finite dimensional solution
when the signal and observation processes are linear and
have Gaussian noise. In this paper the effect of a small non-
linearity in the signal is discussed by considering stochastic
flows for the signal and a Girsanov transformation for the
observation. The result can be expressed in terms of Gaus-

sian densities.
(e~

1. THE LINFAR FILTER

In this section we first describe the linear Kalman filter. For
simplicity real valued signal and observation processes will
be considered; the vector case can be discussed with more
complicated notation and calculations. w¢, By, ¢t 2> 0, are
two independent Brownian motions defined on a probabil-
ity space ({2, F, P) which has a complete, right continuous
filtration {F}} to which w and B are adapted. a¢, t > 0, is
8 locally integrable, measurable function, and hy, t > 0, is
a function with a locally integrable derivative.

Suppose the SIGNAL is described by the linear cquation.

¢t
I =1z, +/ uTudu +wy. (1.1)
8

Write the solution of (1.1) as £, 4(zs). Supose #(s,t) is the
solution of

EQ—‘(;?L) = ayP(s, t)dt, t>s, (1.2)
$(s,s) = 1.
Clearly, ®(s,t) = exp (/‘audu) and
t
£04(zs) = <b(s,t){z. + / Q(s,u)‘ldwu}. (1.3)

Research partially supported by the Natural Sciences and
Engineering Research Council of Canada under grant
A-7964, and the U.S. Army Research Office under contract
DAALO03-87-K-0102.
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The OBSERVATION process is taken to be of the form

t
ve = /0 hako (zg)ds + By. (1.4)

As usual, we shall suppose zq is a Gaussian Fy measurable
random variable independent of w¢, By, t > 0.

Write (Y;}, t > 0, for the right continuous complete filtra-
tion generated by the observations and
Zi(zy) = Elz¢ |25, Vy] for t2>s.

Then it is known that #,(z,) is a Gaussian random variable
for t > s and

t
i(zs) =25+ /‘ auiy(zs)du

¢
+ / Pauhu(dys = hydu(zs))du
P ]

(1.5)
where ‘
Pas = Etzt |=... Yi) - (Elzt | 25, Yi])?
satxsﬁes the detcrzmmstnc equatxon
dp“ —h2PZ, 4 2atPy 4 +1, (1.6)
Py =0.

Consequently, #4(z,) is Gaussian with conditional mean
£4(zs) and variance P, ;.

Wntmg %y = Efz¢ | Yy} we see #; is Gaussian with mean
and variance P, given by

t ¢
#; = E{zq] +/ agiads + / Pshg(dys — heisds)
0 0 (1.7)
dP,
—dti = —h?P? + 20, P + 1, (1.8)

Py = E[z) - (Elz))%.




-

L g = -

The equations (1.5) and (1.6), or (1.7) and (1.8) are forms
of the Kalmar filter. The inovation processes

t
3i(zs) =y — / hyty(zs)du, t>s,
s
¢
Be =y~ / hutudu, t20,
0

are {Y;} Brownian motions. They generate the same filtra-
tion as {y¢}.

The Gaussian measure on R with mean m and vanance P
will be denoted by u(m, P,dz). If g is a Borel measurable
function on R we shall write

F(g,m,P):/;?g(x)p(m,P,d:).

If Z; is an integrable process, t > 0, II;(Z) will denote the
{Y;}-predictable projection of Z, so 0y(Z) = E[2; | V1] a-s.
For a function g(¢,z) such that

lg(t, 2)l £ K(1 + [2™)
for some K > 0, m > 0, we shall write

Oi(g) = Me(g(t, z¢)).
From (2] we quote the following results:
LemMMa 1.1. a) Suppose 0 £ s < t. The conditional law

of z4 given Yy is
w(m$, P§,dz)

where
¢ _ . P [t -
m,=z:+—/ TuhudBy (1.9)
Ts Js
P2t .
Pi=Py- () /’ V212 du (1.10)

and v is the solution of

t
Tt=1+ /0 (as - P,hg)‘y,ds (1.11)
so

t
v = exp /0 (as — Pyh?)ds.

b) Suppose g(t,z) and gz(t, z) are Borel functions satisfying
growth conditions as above. Then

([ sto.zis) = [ Matoras

t L] P,
+/ Hs(/ .4.71.'('4,3'14)_'i d“)‘hhsdﬂs-
0 0 Tu (1.12)
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From (1.3) we see the map

- fs,t(z)

is a diffeomorphism of R and

363,!(1) -

e $(s, t).

From (1.5) we can write

1
(ze) = 8(s, )2+ [ 8s,) I Pruhuddu(z)] (113)

and
3:':,(:,) _
a:s - 78,‘
where .
Vst = 1+ / (“u - Pa’uha)‘h'udu (114)
3
SO

{
Yot = CXP/ (au ~ P,,uhﬁ)du. (1.15)
s

2. NONLINEAR SIGNAL EQUATIONS

For linear signal and observations the Kalman filter pro-
vides a finite dimensional solution to the filtering problem.
Consider a measurable function f(t,z) on [0, 00} x R which
is twice differentiable in z and which satisfies the growth
condition

o)+ 1) S KQ+1).  (21)

Let € > 0 be a small positive number. Consider a signal
process given by the non-linear equation

t
Iy =z + '/0 (asZs + f(s,%4))ds + wy. (2.2)

Consider the process z defined by

t
y=zg+ /0 8(0,5) Lef(s,boulza))ds (23

where £g ,(-) is the diffeomorphism defined by (1.1).
LEMMA 2.1. The process £g ¢(21) is the solution of (2.2).
PROOF. Substituting (2.3) in (1.3) we have

Gou(20 = 90,020+ 0(0,9) e (s, o,,(22))ds

+/0‘ 'b(O,s)'ldu,]. | (24)




Differentiating (2.4) in ¢ the result.follows:

REMARKS 2.2. Because f satisfies the linear growth con
dition (2.1) £t = £p¢(=¢) has finite moments of all orders.

If Z; is a process we shall write 2; = O(eXy if

((spizee)) ™

for every p 2 1.

= 0(e5)

NOTATION 2.3. Write

t
Bog = 8(0,0) /0 8(0,5)" 1 f(s.25)ds.

Using the mean value theorem we can quickly deduce
PROPOSITION 2.4. £ —z¢ = Do, = edq ¢ + O(e2).

REMARKS 2.5. To discuss the effect of the non-linear signai
%y = £9,1(2¢) on the observations consider the measure b
defined by

dP

—— —3 £
dPIF, At

where
AS =exp(/th,Dg_,dB, -lfth‘jog &).
0 ) 2Jo ”
Then under P
- t
By =B - ‘[) hy Dy, 4ds

is a Brownian motion, i.e.,

¢
v = /0 hoo.s(25)ds + Br. 25)

Therefore, under P the signal process is Z and this now
influences the observations as in (2.5). The non-linear fil-
tering expression we wish to consider is

El€gs(z) | Vi)
By Baye's theorem this is

E[A{&ge(20) | Vi) - (E[AS | i)~ L.

t
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t
PRoof. A} =1+ /0 AShsDg 4dBs and the result fol-

lows by substituting for A on the right and using Propo-
sition 2.4.

From Proposition 3.3 of Picard {2} we have
¢ a2
LEMMA 2.7. TI(A)~! = 1-elI, [/ h,Ao‘,dB,] +0(e2).
0

The main result is the following theorem:
THEOREM 2.8. Writing £¢ = §g ¢(2t), ¢ = €0,¢(z0)
t
Blee | ¥il = Elee | il + ¢E 50 [ hato,dBy 1Y)

t
+eEl8g; | ¥il - eElet | YIE[ [ hatlo,idBs | Y]

+0(e?). (2.6)

PRroOOF.
Elz( | V] = E[A{ 2, | Vi) - E[Af | Y] ™!
= E[Af(z¢ + 0o ) | Y2

x E[(l —c /ot hsl3,4dBs) | Y,] +0(e2)
=5(1+e /0‘ halhg 4dB,)(z¢ +£80,) | ¥i]

t
2
x 1 —eE[/o hsg 1B, | Y]] +Oe?)
by Proposition 2.3 and Lemma 2.7.

REMARKS 2.9. These expectations are all expressible in
terms of Gaussian measures because they are all expecta-
tions of functions of the original linear process z¢ under the
original measure P. For example, E[z; | ;] = T, is given
by the Kalmar filter. The remaining terms in (2.6) can be
expressed in a recursive way; proofs can be found in [1}.
For example, we have

LEMMA 2.10.
t
Elo, 1Y) = #0.0[ [ 800,07 (s, 20

# [ [ fato 2Pz o0, herads]




————— -

NCLUS

As in the paper of Picard (2] the first two terms in an ex-
pansion of the conditional mean in powers of ¢ have been
determined. These coefficients have been expressed explic-
itly in terms of Gaussian measures by using stochastic flows.
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